mysql数据库,分表后,怎么进行分页查询?Mysql分库分表方案?
Mysql分库分表方案
1.为什么要分表:
当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。
mysql中有一种机制是表锁定和行锁定,是为了保证数据的完整性。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。
2. mysql proxy:amoeba
做mysql集群,利用amoeba。
从上层的java程序来讲,不需要知道主服务器和从服务器的来源,即主从数据库服务器对于上层来讲是透明的。可以通过amoeba来配置。
3.大数据量并且访问频繁的表,将其分为若干个表
比如对于某网站平台的数据库表-公司表,数据量很大,这种能预估出来的大数据量表,我们就事先分出个N个表,这个N是多少,根据实际情况而定。
某网站现在的数据量至多是5000万条,可以设计每张表容纳的数据量是500万条,也就是拆分成10张表,
图片来源:网络
那么如何判断某张表的数据是否容量已满呢?可以在程序段对于要新增数据的表,在插入前先做统计表记录数量的操作,当<500万条数据,就直接插入,当已经到达阀值,可以在程序段新创建数据库表(或者已经事先创建好),再执行插入操作。
4. 利用merge存储引擎来实现分表
如果要把已有的大数据量表分开比较痛苦,最痛苦的事就是改代码,因为程序里面的sql语句已经写好了。用merge存储引擎来实现分表, 这种方法比较适合.
mysql分库分表如何解决数据倾斜问题?
在MySQL的分库分表架构中,为了解决数据倾斜问题,可以采取以下几种方法:
1. 哈希分片(Hash Sharding):使用哈希函数对分片键(如用户ID、订单ID)进行哈希计算,将数据分散到不同的库和表中。通过合理选择哈希函数,可以使数据在分片中均匀分布,从而减少数据倾斜。
2. 范围分片(Range Sharding):根据数据的范围将其分片到不同的库和表中。可以根据业务需求选择合适的范围,如按时间范围分片,将不同时间段的数据存储在不同的库或表中。
3. 垂直拆分(Vertical Partitioning):将表按照列的关系和使用频率进行拆分,将不同的列分到不同的表中。这样可以减少单个表的数据量,降低数据倾斜的可能性。
4. 水平拆分(Horizontal Partitioning):将表按照行进行拆分,将不同的行分散到不同的表中。可以根据分片键或其他关键业务字段进行拆分,确保数据在不同分片中均匀分布。
mysql分库分表解决数据倾斜问题
mysql是一种避免避免数据倾斜的手段
允许在map阶段进行join操作,mysql把小表全部读入内存中,在map阶段直接拿另外一个表的数据和内存中表数据做匹配,由于在map是进行了join操作,省去了reduce运行的效率也会高很多
在《hive:join遇到问题》有具体操作
在对多个表join连接操作时,将小表放在join的左边,大表放在Jion的右边,
在执行这样的join连接时小表中的数据会被缓存到内存当中,这样可以有效减少发生内存溢出错误的几率
2. 设置参数
hive.map.aggr = true
hive.groupby.skewindata=true 还有其他参数
3.SQL语言调节
比如: group by维度过小时:采用sum() group by的方式来替换count(distinct)完成计算
4.StreamTable
将在reducer中进行join操作时的小table放入内存,而大table通过stream方式读取